博客
关于我
【源码】基于Simulink的混合动力汽车模型
阅读量:236 次
发布时间:2019-02-28

本文共 3159 字,大约阅读时间需要 10 分钟。

在这里插入图片描述

Hybrid-Electric Vehicle Model in Simulink

Copyright 2011-2020 The MathWorks™, Inc.

要开始此演示,请打开HEV_SeriesParallel.prj。这将为您带来最简单的整车配置。请阅读幻灯片以查看所有可用的配置。

To start this demonstration, open project HEV_SeriesParallel.prj This will bring you to the simplest configuration of the full vehicle. Look at the slides to see all of the available configurations.

There are a number of things to be aware of with this demonstration.

Configurations

Stateflow

Power Quality

Details

Configurations

1.1 For the Mean Value and Detailed electrical variants, re-do the selection of the Electrical subsystem if you change the battery subsystem.

When you change Electrical variants, the solver will change. This is done automatically via a script that is called in the Initialization mask of the Electrical and Battery blocks (Configure_HEV_Simulation.m). However, if you change the Battery variant, the solver doesn’t change until you re-select the Electrical variant.

You probably will not simulate this interactively anyway, as Mean Value variants take 30 minutes - 3 hours to run, and Detailed variants take 12 hours – 36 hours to run.

1.2 The “Cells” variant of the battery is only available for the System-Level electrical variant.

Stateflow

The Stateflow model produces three outputs that route to the Motor, Generator, and Engine control systems. However, by default, those signal connections do not affect the output of those control systems. This is because the Mean Value variant cannot run to completion for Drive Cycle 2 when the Stateflow diagram is connected. All other variants run to completion.

If you want to connect the Stateflow to the rest of the model, each subsystem has a manual switch in it that allows you to select a signal that uses the Stateflow output to enable/disable the output of the PI controller.

However, if you do this, be aware the results will not match the Mean Level and Detailed variants (done in the Report Generation demo). This represents a case where we have made a design change and have automatically documented the effect it has on the overall results.

Power Quality

3.1 The power quality demonstration uses Signal Processing Toolbox. Though it is possible to measure power quality using Simscape Power Systems alone, there are two reasons why we did not use this.

The FFT analysis in the PowerGUI only checks at a single point in time We wanted to see a representation as time varies to identify the component contributing to poor power quality

The Total Harmonic Distortion block in Simscape Power Systems is only for AC networks. For an HEV, the DC network is the most interesting. Spectrogram works for both AC and DC networks.

3.2 DC Voltage for HEV_PQ_Test_B

The plot for HEV_PQ_Test_B shows very clearly that the generator is contributing to poor power quality. However, the voltage on the DC bus for this test shows other larger problems – the battery can’t supply enough voltage for this situation. This situation was the best example we could find of the spectrogram pointing directly to a component on the network, so we chose to include it.

Follow the script DC_Power_Quality_Analysis.m to see the test case

更多精彩文章请关注公众号:在这里插入图片描述

转载地址:http://fcop.baihongyu.com/

你可能感兴趣的文章
MySQL、Redis高频面试题汇总
查看>>
MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
查看>>
mysql一个字段为空时使用另一个字段排序
查看>>
MySQL一个表A中多个字段关联了表B的ID,如何关联查询?
查看>>
MYSQL一直显示正在启动
查看>>
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>
MySQL中auto_increment有什么作用?(IT枫斗者)
查看>>
MySQL中B+Tree索引原理
查看>>